El mayor logro de Huygens fue el desarrollo de la teoría ondulatoria de la luz, descrita ampliamente en el Traité de la lumière (1690), y que permitía explicar los fenómenos de la reflexión y refracción de la luz mejor que la teoría corpuscular de Newton






descargar 25 Kb.
títuloEl mayor logro de Huygens fue el desarrollo de la teoría ondulatoria de la luz, descrita ampliamente en el Traité de la lumière (1690), y que permitía explicar los fenómenos de la reflexión y refracción de la luz mejor que la teoría corpuscular de Newton
fecha de publicación28.06.2016
tamaño25 Kb.
tipoDocumentos
l.exam-10.com > Ley > Documentos
BIOGRAFIA DE LOS PRINCIPALES CIENTIFICOS QUE TRABAJARON EN LA DUALIDAD ONDA PARTICULA.

HUYGENS

(La Haya, 1629-id., 1695) Matemático, astrónomo y físico holandés. Hijo del poeta renacentista Constantin Huygens, pronto demostró un gran talento para la mecánica y las matemáticas. Estudió en la Universidad de Leiden y en el Colegio de Breda.

Huygens adquirió una pronta reputación en círculos europeos por sus publicaciones de matemáticas y por sus observaciones astronómicas, que pudo realizar gracias a los adelantos que introdujo en la construcción de telescopios. Destacan, sobre todo, el descubrimiento del mayor satélite de Saturno, Titán (1650), y la correcta descripción de los anillos de Saturno, que llevó a cabo en 1659. Más tarde se trasladó a París, donde permaneció desde 1666 a 1681, fecha de su regreso a La Haya. En 1666 fue miembro fundador de la Academia Francesa de Ciencias.

En 1673 se publicó su famoso estudio sobre El reloj de péndulo, brillante análisis matemático de la dinámica pendular en el que se incluyeron las soluciones completas a problemas como el período de oscilación de un péndulo simple y las leyes de la fuerza centrífuga para un movimiento circular uniforme. Contemporáneo de Isaac Newton, su actitud mecanicista le impidió aceptar la idea de fuerzas que actúan a distancia.

El mayor logro de Huygens fue el desarrollo de la teoría ondulatoria de la luz, descrita ampliamente en el Traité de la lumière (1690), y que permitía explicar los fenómenos de la reflexión y refracción de la luz mejor que la teoría corpuscular de Newton.

NEWTON

Científico inglés (Woolsthorpe, Lincolnshire, 1642 - Londres, 1727). Hijo póstumo y prematuro, su madre preparó para él un destino de granjero; pero finalmente se convenció del talento del muchacho y le envió a la Universidad de Cambridge, en donde hubo de trabajar para pagarse los estudios. Allí Newton no destacó especialmente, pero asimiló los conocimientos y principios científicos de mediados del siglo XVII, con las innovaciones introducidas por Galileo, Bacon, Descartes, Kepler y otros.

Tras su graduación en 1665, Isaac Newton se orientó hacia la investigación en Física y Matemáticas, con tal acierto que a los 29 años ya había formulado teorías que señalarían el camino de la ciencia moderna hasta el siglo xx; por entonces ya había obtenido una cátedra en su universidad (1669).

Suele considerarse a Isaac Newton uno de los protagonistas principales de la llamada «Revolución científica» del siglo XVII y, en cualquier caso, el padre de la mecánica moderna. No obstante, siempre fue remiso a dar publicidad a sus descubrimientos, razón por la que muchos de ellos se conocieron con años de retraso.

Newton coincidió con Leibniz en el descubrimiento del cálculo integral, que contribuiría a una profunda renovación de las Matemáticas; también formuló el teorema del binomio (binomio de Newton). Pero sus aportaciones esenciales se produjeron en el terreno de la Física.

Sus primeras investigaciones giraron en torno a la óptica: explicando la composición de la luz blanca como mezcla de los colores del arco iris, Isaac Newton formuló una teoría sobre la naturaleza corpuscular de la luz y diseñó en 1668 el primer telescopio de reflector, del tipo de los que se usan actualmente en la mayoría de los observatorios astronómicos; más tarde recogió su visión de esta materia en la obra Óptica (1703).

También trabajó en otras áreas, como la termodinámica y la acústica; pero su lugar en la historia de la ciencia se lo debe sobre todo a su refundación de la mecánica. En su obra más importante, Principios matemáticos de la filosofía natural (1687), formuló rigurosamente las tres leyes fundamentales del movimiento: la primera ley de Newton o ley de la inercia, según la cual todo cuerpo permanece en reposo o en movimiento rectilíneo uniforme si no actúa sobre él ninguna fuerza; la segunda o principio fundamental de la dinámica, según el cual la aceleración que experimenta un cuerpo es igual a la fuerza ejercida sobre él dividida por su masa; y la tercera, que explica que por cada fuerza o acción ejercida sobre un cuerpo existe una reacción igual de sentido contrario.

De estas tres leyes dedujo una cuarta, que es la más conocida: la ley de la gravedad, que según la leyenda le fue sugerida por la observación de la caída de una manzana del árbol. Descubrió que la fuerza de atracción entre la Tierra y la Luna era directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia que las separa, calculándose dicha fuerza mediante el producto de ese cociente por una constante G; al extender ese principio general a todos los cuerpos del Universo lo convirtió en la ley de gravitación universal.

La mayor parte de estas ideas circulaban ya en el ambiente científico de la época; pero Newton les dio el carácter sistemático de una teoría general, capaz de sustentar la concepción científica del Universo durante varios siglos. Hasta que terminó su trabajo científico propiamente dicho (hacia 1693), Newton se dedicó a aplicar sus principios generales a la resolución de problemas concretos, como la predicción de la posición exacta de los cuerpos celestes, convirtiéndose en el mayor astrónomo del siglo. Sobre todos estos temas mantuvo agrios debates con otros científicos (como Halley, Hooker, Leibniz o Flamsteed), en los que encajó mal las críticas y se mostró extremadamente celoso de sus posiciones.

Como profesor de Cambridge, Newton se enfrentó a los abusos de Jacobo II contra la universidad, lo cual le llevó a aceptar un escaño en el Parlamento surgido de la «Gloriosa Revolución» (1689-90). En 1696 el régimen le nombró director de la Casa de la Moneda, buscando en él un administrador inteligente y honrado para poner coto a las falsificaciones. Volvería a representar a su universidad en el Parlamento en 1701. En 1703 fue nombrado presidente de la Royal Society de Londres. Y en 1705 culminó la ascensión de su prestigio al ser nombrado caballero.

YOUNG

Inglés médico y físico, llevado 13 de junio de 1773, Milverton, Somerset, y murió el 10 de mayo 1829, en Londres.

Biografía de Thomas Young

Thomas Young estableció el principio de interferencia de la luz y por lo tanto resucitó la teoría ondulatoria de un siglo de antigüedad de la luz. También fue un egiptólogo que ayudó a descifrar la piedra Rosetta.

Desde el arte a la medicina

padre Thomas Young fue un banquero y el joven fue educado como un cuáquero. Fue un niño precoz, aprendiendo a leer a la edad de dos. Asistió a dos internados entre 1780 y 1786, donde su habilidad para aprender idiomas se convirtió en marca. Él también poseía a principios amplios conocimientos de matemáticas y ciencias naturales. Para los próximos años, estudió en privado, su lectura incluye las obras de Isaac Newton (1642-1727), Antoine-Laurent Lavoisier (1743-1794) y José Negro (1728-1799). En 1793, siguiendo el consejo de su sobrino el Dr. Richard Brocklesby, entró en el Hospital St. Bartholomew de Londres, para estudiar medicina. Como estudiante de medicina que asistieron a las conferencias de John Hunter (1728-1793), William Cruikshank (1745-1800), Matthew Baillie (1761-1823), y otros. Continuó el estudio de Edimburgo de 1794, y desde 1795 en Göttingen. Es a partir de este período, que comenzó a distanciarse de los cuáqueros. Obtuvo su doctorado en medicina en 1796.

De 1797 a 1803 jóvenes se unió a Emmanuel College de Cambridge (MR 1803, MD 1808), donde centró su atención en asuntos científicos. En 1797 un tío lo dejó 10.000 libras y una casa de Londres en la que se trasladó en 1800 y en 1804 se casó con Eliza Maxwell.

En 1799 la instalación de jóvenes de una práctica médica en Londres. Su interés principal estaba en la percepción sensorial, y, cuando todavía era un estudiante de medicina, que había descubierto la forma en que la lente del ojo cambia de forma para enfocar objetos a distintas distancias. En 1801 mostró que los resultados de astigmatismo de la córnea mal curvas. Ese mismo año volvió al estudio de la luz.

Ya en torno a 1790, antes del descubrimiento de las células conos en la retina, Young introdujo la teoría original de color. Lo que ahora se conoce como la teoría de Young-Helmholtz, fue publicado por primera vez en 1802 por Thomas Young. Se basa en la suposición de que hay tres fundamentales color sensaciones de color rojo, verde y azul-y que hay tres grupos diferentes de conos en la retina, cada grupo especialmente sensible a uno de estos tres colores. La luz de un objeto de color rojo, por ejemplo, estimula los conos que son más sensibles al rojo de los otros conos. Otros colores (además de rojo, verde y azul) se observan cuando las células conos son estimulados en diferentes combinaciones. Sólo en los últimos años ha mostrado evidencia concluyente de que la teoría de Young-Helmholtz, de hecho, precisa. La sensación de color blanco que se produce por la combinación de los tres colores primarios, y los resultados de negro de la ausencia de estimulación. La teoría fue posteriormente desarrollado por Hermann von Helmholtz.

Maxwell

(Edimburgo, 1831-Glenlair, Reino Unido, 1879) Físico británico. Nació en el seno de una familia escocesa de la clase media, hijo único de un abogado de Edimburgo. Tras la temprana muerte de su madre a causa de un cáncer abdominal –la misma dolencia que pondría fin a su vida–, recibió la educación básica en la Edimburg Academy, bajo la tutela de su tía Jane Cay.

Con tan sólo dieciséis años ingresó en la universidad de Edimburgo, y en 1850 pasó a la Universidad de Cambridge, donde deslumbró a todos con su extraordinaria capacidad para resolver problemas relacionados con la física. Cuatro años más tarde se graduó en esta universidad, pero el deterioro de la salud de su padre le obligó a regresar a Escocia y renunciar a una plaza en el prestigioso Trinity College de Cambridge.

En 1856, poco después de la muerte de su padre, fue nombrado profesor de filosofía natural en el Marischal College de Aberdeen. Dos años más tarde se casó con Katherine Mary Dewar, hija del director del Marischal College. En 1860, tras abandonar la recién instituida Universidad de Aberdeen, obtuvo el puesto de profesor de filosofía natural en el King’s College de Londres.

En esta época inició la etapa más fructífera de su carrera, e ingresó en la Royal Society (1861). En 1871 fue nombrado director del Cavendish Laboratory. Publicó dos artículos, clásicos dentro del estudio del electromagnetismo, y desarrolló una destacable labor tanto teórica como experimental en termodinámica; las relaciones de igualdad entre las distintas derivadas parciales de las funciones termodinámicas, denominadas relaciones de Maxwell, están presentes de ordinario en cualquier libro de texto de la especialidad.

Sin embargo, son sus aportaciones al campo del electromagnetismo las que lo sitúan entre los grandes científicos de la historia. En el prefacio de su obraTreatise on Electricity and Magnetism (1873) declaró que su principal tarea consistía en justificar matemáticamente conceptos físicos descritos hasta ese momento de forma únicamente cualitativa, como las leyes de la inducción electromagnética y de los campos de fuerza, enunciadas por Michael Faraday.

EINSTEIN

Científico estadounidense de origen alemán. Está considerado generalmente como el físico más importante de nuestro siglo, y por muchos físicos como el mayor científico de todos los que han existido. Nació de padres judíos en la ciudad alemana de Ulm el 14 de marzo de 1879. A la edad de 17 años hizo su ingreso en el Politécnico de Zürich, donde estudió durante tres años hasta obtener el diploma de enseñante; en 1898 ocuparía un modesto cargo en la oficina de patentes de Berna, la capital suiza.

En 1905 publicó en Annalen der Physik tres importantes comunicaciones, entre las cuales estaba Zur Elektrodinamik bewegter Körper (Sobre la electrodinámica de los cuerpos en movimiento), donde se formulaban con toda claridad los principios de la llamada Teoría especial de la relatividad.

Los elementos que están en la base de esta teoría son sencillos y se asientan en la experiencia. Según el primero, en un tren que se moviera suavemente con una velocidad constante a lo largo de una vía recta, todas las leyes físicas serían iguales que las de una sala inmóvil; según el segundo, la velocidad de la luz, tanto la medida en el tren en marcha como en la habitación, sería siempre la misma, es decir, de 300000 km/s (con tal que se propagara por el aire), independientemente del estado de movimiento y del manantial luminoso.

A partir de esos dos principios dedujo Einstein algunos resultados que en 1905 parecían muy extraños, pero que a cualquier físico de nuestros días le resultan familiares y convincentes. El de mayor importancia es el que se refiere a la ruptura con la física newtoniana, cuya validez queda restringida por la teoría especial de la relatividad a velocidades mucho más pequeñas que las de la luz. En la física newtoniana los acontecimientos ocurren en un espacio y un tiempo absolutos, lo mismo en una habitación que en un tren en marcha. Según la teoría especial no pueden separarse el tiempo y el espacio; aquél fluye en forma diferente en habitáculos y en trenes en marcha, y esta diferencia podría ser detectable si la velocidad del tren se acercara a la de la luz.

También demuestra esta Teoría especial que la velocidad de la luz es la mayor que pueden alcanzar los cuerpos materiales. De hecho, esta predicción fue confirmada experimentalmente, no con el movimiento de trenes, sino con el de partículas que se movían a velocidades cercanas a las de la luz. Otro resultado muy importante de esa teoría fue la deducción de la relación existente entre energía y masa en la ahora famosa fórmula: E = mc², en la que E significa la energía, m, la masa, y c, la velocidad de la luz. La importancia de esta fórmula quedaría demostrada 40 años más tarde con las explosiones atómicas.

La segunda comunicación publicada en el volumen que contenía la teoría especial de la relatividad explica la teoría del efecto fotoeléctrico, según la cual la luz se convierte en una especie de chubasco de proyectiles, la energía de los cuales es proporcional a la frecuencia de la onda luminosa.

Finalmente, la tercera comunicación contenía una teoría matemática sobre el movimiento browniano, es decir, el de pequeñas partículas suspendidas en un fluido y moviéndose de un modo aparentemente irregular por bajo del influjo de las partículas del fluido más pequeñas aún.

Tuvieron que transcurrir tres años para que la teoría especial fuera reconocida en el mundo de los físicos. En 1911 pasó a ser Einstein profesor de la Universidad alemana de Praga (entonces perteneciente a Austria), y allí comenzó su trabajo sobre la Teoría general de la relatividad. Todavía le exigió otros cinco años de intenso trabajo hasta que esta teoría fuera finalmente formulada en 1916. En el intervalo aceptó Einstein una invitación del profesor Max Planck para ir a Alemania, y en 1913 se convertía en miembro de la Academia Prusiana de Ciencias de Berlín.

La Teoría general de la relatividad era la primera desde los tiempos de Newton que se enfrentaba al problema de la gravitación. En un vacío absoluto, sin materia, la teoría especial era válida; pero, según la teoría general, las masas y sus velocidades conforman nuestro espacio-tiempo, que no posee la estructura sencilla que se le atribuía en la teoría especial. Nuestro espacio-tiempo deja de ser euclidiano. Desde algún tiempo los matemáticos sabían que la geometría euclidiana es sólo un caso especial de las geometrías más generales, como las rienmannianas. Einstein dio por sentado que nuestro mundo sería euclidiano sólo si estuviera vacío de materia, y rienmanniano si estaba lleno de planetas, estrellas y nebulosas. En este caso posee un campo métrico del mismo modo que las partículas cargadas producen un campo electromagnético.

A primera vista la teoría general de la relatividad parece especulativa y deducida fundamentalmente del hecho conocido de que todos los cuerpos caen en la Tierra con la misma aceleración, sea cual sea su masa. Pero de esta teoría se sacaron nuevas conclusiones que pasaron con éxito la prueba experimental.

La primera y quizá la más importante de las conclusiones para ser verificada fue la de las diferencias predictivas entre las nuevas teorías gravitatorias y la de Newton. La más espectacular de estas diferencias se refiere a que los rayos luminosos emitidos por una estrella distante en dirección de la Tierra se curvan al pasar bordeando el Sol. Este fenómeno puede comprobarse al fotografiar dos veces la misma región celeste: la primera vez de noche y la segunda cerca del Sol eclipsado. Estas dos fotografías deberán ser ligeramente diferentes precisamente a causa de esa ligera curvatura de los rayos luminosos.

En 1919 los ingleses enviaron dos expediciones, una de ellas a América del Sur, la otra a África, para fotografiar un sector del cielo durante un eclipse solar, y los resultados confirmaron la predicción de la teoría general de la relatividad. Este hecho causó un gran impacto en las concepciones de muchos en todo el mundo e hizo surgir la gran fama de la teoría general y la de su creador. En 1921 Einstein era galardonado con el premio Nobel de Física por su descubrimiento de la ley de la fotoelectricidad.

Cuando Hitler ascendió al poder en Alemania, Einstein emigró a Estados Unidos, donde a partir de 1933 fue profesor en el Instituto para Investigaciones Avanzadas de Princeton (N.J.). El problema en el que trabajó en sus últimos años fue el de la teoría del campo unificado que, a través de una serie de ecuaciones, había de abarcar tanto los fenómenos gravitatorios como los electromagnéticos.

En 1953 (poco antes de su muerte, que le sorprendió en Princeton), salió a la luz la cuarta edición de su famosa obra The Meaning of Relativity (El significado de la relatividad), aparecida por primera vez en Calcutta (1920). En ella Einstein publicó en forma detallada su antes citada teoría del campo unificado a la que había llegado, hasta cierto punto, en 1949. Entre otros trabajos científicos suyos pueden citarse: Relativity; the Special and General Theory (Nueva York, 1920); Investigations on Theory of Brownian Movement (1926). Mein Weltbild (1934), My Philosophy (1934) y Out of my Later Years (1950).

Añadir el documento a tu blog o sitio web

similar:

El mayor logro de Huygens fue el desarrollo de la teoría ondulatoria de la luz, descrita ampliamente en el Traité de la lumière (1690), y que permitía explicar los fenómenos de la reflexión y refracción de la luz mejor que la teoría corpuscular de Newton icon1. Elige la opción correcta en cada caso y completa el texto con tus conclusiones
«Que haya luz». Y hubo luz (Gn 1, 1-3). La luz fue el requisito básico para dar forma al mundo

El mayor logro de Huygens fue el desarrollo de la teoría ondulatoria de la luz, descrita ampliamente en el Traité de la lumière (1690), y que permitía explicar los fenómenos de la reflexión y refracción de la luz mejor que la teoría corpuscular de Newton iconEn el siglo XVII, Newton fue el primero que, por medio de un prisma...

El mayor logro de Huygens fue el desarrollo de la teoría ondulatoria de la luz, descrita ampliamente en el Traité de la lumière (1690), y que permitía explicar los fenómenos de la reflexión y refracción de la luz mejor que la teoría corpuscular de Newton iconAntonio Blay fue investigador de la naturaleza humana y del desarrollo...

El mayor logro de Huygens fue el desarrollo de la teoría ondulatoria de la luz, descrita ampliamente en el Traité de la lumière (1690), y que permitía explicar los fenómenos de la reflexión y refracción de la luz mejor que la teoría corpuscular de Newton iconLa teoría del conocimiento es una parte importante de la filosofía....
«teoría del conocimiento» con otros términos como «epistemología», &c. Aquí nos limitaremos a exponer brevemente los problemas fundamentales...

El mayor logro de Huygens fue el desarrollo de la teoría ondulatoria de la luz, descrita ampliamente en el Traité de la lumière (1690), y que permitía explicar los fenómenos de la reflexión y refracción de la luz mejor que la teoría corpuscular de Newton iconI. e tomas cadavid restrepo. Tema: Teorías económicas. I. Logro:...

El mayor logro de Huygens fue el desarrollo de la teoría ondulatoria de la luz, descrita ampliamente en el Traité de la lumière (1690), y que permitía explicar los fenómenos de la reflexión y refracción de la luz mejor que la teoría corpuscular de Newton icon2. Existe en todo el cosmos la escala sonora de los siete tonos;...
«Este era en el principio con Dios». «Todas las cosas por Él fueron hechas, y sin Él nada de lo que ha sido hecho, fue hecho». «En...

El mayor logro de Huygens fue el desarrollo de la teoría ondulatoria de la luz, descrita ampliamente en el Traité de la lumière (1690), y que permitía explicar los fenómenos de la reflexión y refracción de la luz mejor que la teoría corpuscular de Newton iconUna puerta hacia la luz testimonios de quienes al morir no van de...

El mayor logro de Huygens fue el desarrollo de la teoría ondulatoria de la luz, descrita ampliamente en el Traité de la lumière (1690), y que permitía explicar los fenómenos de la reflexión y refracción de la luz mejor que la teoría corpuscular de Newton iconSu reunión de luz, fue combatida

El mayor logro de Huygens fue el desarrollo de la teoría ondulatoria de la luz, descrita ampliamente en el Traité de la lumière (1690), y que permitía explicar los fenómenos de la reflexión y refracción de la luz mejor que la teoría corpuscular de Newton iconUna premisa de la primitiva teoría de los sistemas sostiene que un...

El mayor logro de Huygens fue el desarrollo de la teoría ondulatoria de la luz, descrita ampliamente en el Traité de la lumière (1690), y que permitía explicar los fenómenos de la reflexión y refracción de la luz mejor que la teoría corpuscular de Newton iconTeoría del desarrollo cultural de las funciones psíquicas






© 2015
contactos
l.exam-10.com