Trabajo, energía y potencia






descargar 30.03 Kb.
títuloTrabajo, energía y potencia
fecha de publicación11.07.2015
tamaño30.03 Kb.
tipoDocumentos
l.exam-10.com > Química > Documentos

TRABAJO, ENERGÍA Y POTENCIA





  1. Introducción

  2. Trabajo

  3. Energía cinética

  4. Energía potencial

  5. Conservación de la energía mecánica

  6. Potencia




  1. Introducción

Una señora ejerce fuerza al empujar el coche de su bebé. Dos automóviles en movimiento al chocar se ejercen mutuamente fuerzas, y la tierra ejerce fuerza sobre un cuerpo que cae. Podemos decir que los cuerpos que producen fuerza son los que poseen energía. En los casos anteriores, la señora tiene energía muscular, los automóviles en movimiento tienen energía cinética y la tierra posee energía gravitatoria.

Por lo tanto la energía se clasifica en: mecánica, interna, electromagnética, química y nuclear, etc.

La energía es la capacidad para realizar un trabajo.

  1. Trabajo

La definición de trabajo en física no es el mismo que el concepto de trabajo en la vida cotidiana. Por ejemplo, cuando una persona sostiene un saco de arena sobre sus hombros, desde el punto de vista de la Física no se realiza trabajo.

Para que se realice trabajo, la fuerza aplicada debe tener al menos una componente en la dirección del desplazamiento.

El trabajo se define así: W = F.d = F.d cos (θ); también lo podemos escribir así:

W = Fcos(θ)d. El trabajo es una magnitud escalar y se mide en N.m y esto nos resulta Joule (J).

Ejemplo: a un cuerpo de masa m = 5,00 kg que se encuentra sobre una superficie en que el coeficiente de fricción cinética es de 0,200, se le aplica una fuerza F = 70,0 N que hace un ángulo de 30,0º con la horizontal. Si la masa es desplazada 4,00 m sobre la superficie, determina:

  1. El trabajo que hace la fuerza aplicada.

W = Fcos(θ)d WF= 70,0 cos (30,0º) (4,00) = 242 J


  1. El trabajo realizado por la fuerza de fricción.

Wf = -(fc)d = - (μc N ) d = -[ μc (mg – F sen 30,0º) ]d = -[0,200 (5,00{9,80}-70,0 sen 30,0º ]4,00 = -11,2 J


  1. El trabajo total que se invierte en desplazar la masa 4,00m.

WT = WF - Wf = 242 – 11 = 231 J

3.Energía cinética

Una piedra en movimiento puede hacer caer un mango, un mazo en movimiento puede derribar una pared, estos son ejemplos de cómo los cuerpos en movimiento pueden realizar trabajo; es decir poseen energía. La energía que tienen los cuerpos en movimiento se denomina energía cinética (Ec)

Ec = ½ m V2

El trabajo total que una fuerza realiza es igual al cambio en la energía cinética del cuerpo sobre el cual actúa la fuerza.

W = ½ m Vf2 + ½ m Vi 2 . De este teorema se desprende que la energía cinética que una partícula pierde, se transformará en trabajo.

  1. Energía Potencial

La energía disponible que posee un sistema en función de su posición o condición se denomina energía potencial (Ep). La energía potencial señala que debe haber un potencial energético capaz de producir trabajo. En los sistemas mecánicos la energía potencial tiene asociada una fuerza que se denomina fuerza conservativa. Una fuerza F es conservativa cuando el trabajo realizado por esta fuerza sólo depende de la posición inicial y final del cuerpo; es decir, que no depende de la trayectoria que éste sigue cuando se desplaza entre los puntos extremos del recorrido.


    1. Energía Potencial gravitatoria

Cuando elevamos un cuerpo una altura h sobre el suelo y le aplicamos una fuerza F igual a su peso, y se eleva a velocidad constante tenemos: W = F d, entonces F = mg y el trabajo será:
W = mgh

El trabajo realizado por la fuerza aplicada para elevar el cuerpo se ha acumulado en forma de energía potencial gravitatoria (E G ) , entonces :

E G = mgh

La relación que existe entre la energía potencial gravitatoria y la energía cinética es:

E G = mgh = ½ mVF2 =Ec

Esto significa que el trabajo que una fuerza realiza para elevar un cuerpo una cierta altura, se acumula en energía potencial gravitatoria y que esta energía disponible se puede transformar completamente en energía cinética cuando el cuerpo se suelta y llega al suelo.

Ejemplo: una bola de 300 g se eleva 25,0 cm sobre la superficie de una mesa, que tiene una altura de 0,80 m.

  1. La fuerza para elevar la bola con velocidad constante.

F = P = mg= (0,300) (9,8) = 2,94 N


  1. La energía potencial gravitatoria de la bola con respecto a la mesa.

E G = mgh = 0,300 (9,80)0,250= 0,735 J


  1. La energía potencial gravitatoria de l a bola con respecto al suelo

E G = mgh =0,300 (9,80)0,1,05 = 3,09 J

  1. Si quitamos la mesa y soltamos la bola, ¿Con qué energía cinética llega al suelo?

Cuando la bola llega al suelo, la energía potencial gravitatoria se ha transformado en energía cinética, por lo tanto:

Ec = E G = 3,09 J



  1. ¿Cuál es la rapidez de la bola cuando llega al suelo?




Ec = ½ mV2 V =√ 2 Ec/ m = √ 2 (3,09)/0,300 = 4,54 m/s


    1. Energía potencial del Resorte

La fuerza (F) que hay que aplicar para comprimir el resorte una distancia X está dada por la ley de Hooke:

F = K X

La energía potencial que acumula un resorte, con módulo elástico k, cuando es comprimido o alargado una distancia X, está dado por:
ER = ½ k X2

Un resorte almacena siempre energía ya sea que se alargue o se comprima, lo que implica que la energía potencial de un resorte será siempre positiva. Por depender la energía almacenada en un resorte de sus posiciones finales e iniciales, las fuerzas que gobiernan la compresión o el estiramiento de un resorte son fuerzas conservativas.

Ejemplo: Considera un resorte que al colgarle una masa de 2,0 kg se deforma 0,50 m. Si a este resorte se le aplica una fuerza de compresión de 30N, determina:

  1. E
    K
    l módulo elástico del resorte.

= F = mg = (2,0)(9,80) = 39 N/m

X X 0,50

  1. La distancia que se comprime el resorte cuando se le aplica la fuerza de 30 N.

X = F/ K = 30/39 = 0,77 m


  1. La energía potencial del resorte cuando es comprimido producto de la fuerza de 30 N.

ER = ½ k X2 = ½ (39) (0,77)2 = 12 J

5.Conservación de la Energía Mecánica

El principio de conservación de la energía mecánica establece que un sistema en que todas las fuerzas involucradas sean conservativas, la energía mecánica del sistema permanece constante. Se entiende por energía mecánica a la suma de la energía cinética más la energía potencial (gravitatoria o del resorte), esto quiere decir que el aumento de la energía cinética es igual a la disminución de la energía potencial.

∆Ec + ∆Ep =0 como Ec + Ep = EM, el cambio en la energía mecánica es cero. EM = 0

Para que esto se cumpla , la energía mecánica inicial y final deben ser iguales, por lo tanto escribimos el principio de conservación de la energía mecánica así:

Eci + Epi = EcF + EpF = constante
Ejemplo: Un carrito de 80,0 kg se encuentra en

Reposo en la parte superior de una montaña rusa a la

Altura de 40,0 m (punto A). Si al pasar por el punto B,

La rapidez del carrito es de 20,0 m/s, determine:

  1. La energía cinética, potencial gravitatoria y

mecánica en el punto A.

EcA = ½ m VA” = ½ (80,0) (0) = 0
E GA = mgh A = (80,0)(9,80)(40,0) = 3,14 x 104 J

EMA =Ec A + EpA = Ec A + EGA = 0 + 3,14 x 104 J


  1. La energía cinética en el punto B será :

EcB = ½ m VB2 = ½ (80,0)(20,0) = 1,60 x 104 J


  1. La energía potencial en el punto B será:



EMA = EMB

EcA + E GA = EcB + E GB

Despejando la energía potencial gravitatoria en el punto b, tenemos:

E GB = EcA + E GA - EcB = 0 + 3,14 x 104 J - 1,60 x 104 J = 1,54 x 104 J


  1. La altura del punto B estará dado por:


E GB = mghB

hB = EcB = 1,54 x 104 J = 19,6 m

mg (80,0)(9,80)



  1. POTENCIA

Si elevas tu mochila desde el suelo a la mesa en tres segundos y en otra ocasión lo haces en un minuto, en ambos casos has realizado el mismo trabajo; pero el trabajo realizado en menos tiempo es más eficiente. La magnitud que se utiliza para medir la rapidez con que se realiza un trabajo es la potencia, que se define como el trabajo realizado por unidad de tiempo.

P = W

T

Si el trabajo está dado en Joule y el tiempo en segundos, las unidad de la potencia será J/s, que en elSistema Internacional se denmomina watt (W), es decir;

1 Joule = -1 J = 1 watt = W

segundo s

En el caso en que una fuerza F actuando sobre un objeto lo desplace una distancia d en un tiempo t, la Potencia se puede expresar como:
P = W = F . d = F (d/t)

t t
P =F. V

Ejemplo: el motor de un montacarga levanta un objeto de 500 kg a una rapidez de 0,100 m/s, determina: montacarga

  1. La fuerza que ejerce el motor del

F = mg = (500)(9,80) = 4,90 x 10 3 N


  1. La potencia que desarrolla el motor del montacarga

P = F V = (4,90 x 103)(0,100) = 490 W


PRÁCTICA



  1. Calcular el trabajo realizado por una fuerza de 5N que se desplaza 8 m, pero la fuerza forma con el eje X un ángulo de 37º.

  2. Calcular el trabajo realizado por una fuerza de 7N que se desplaza a 9m, pero la fuerza es perpendicular al desplazamiento.

  3. Un baúl es arrastrado 24m por el piso por medio de una cuerda que forma un ángulo con la horizontal. La tensión en la cuerda es de 8N. Calcule el trabajo desarrollado cuándo:

  1. Ө = 0º

  2. Ө = 30º

  3. Ө = 60º

  1. Calcular el trabajo realizado por una fuerza de 5N que se desplaza a una distancia de 8m en sentido contrario al desplazamiento.

  2. Calcular el trabajo para llevar un cuerpo desde la posición X = 6m hasta X = 10m.

  3. Un camión de 2500 kg que se mueve a 60 km/h choca contra una pared de ladrillos y se detiene en 0,2 s:

a. ¿Cuál es la variación de la cantidad de movimiento?

b. ¿Cuál es el valor del impulso?

c. Encuéntrese la fuerza media sobre el camión durante el impacto.

  1. Una pelota de béisbol de 0,2 kg llega al bateador con una velocidad de 20 m/s. Después de ser golpeadas, sale a 30 m/s en dirección opuesta. Si la pelota ejerce una fuerza media de 300N, ¿Durante cuánto tiempo estuvo en contacto con el bate?

  2. Sobre un cuerpo de 280 g que se encuentran inicialmente en reposo, se ejerce un impulso de 5,4 N.s Calcular la velocidad que adquiere.

  3. Una masa de 40 kg es elevada a una altura de 20m. Si la operación se realiza en 3s. ¿Cuánta potencia se desarrolló?

  4. Un ascensor de 300 kg sube una distancia de 100m en 2 minutos a velocidad constante. ¿Cuándo aumenta su energía potencial?, ¿Cuánta potencia desarrolló el mecanismo elevador?

  5. ¿Cuál es la velocidad máxima a la cual un motor de 40 kw puede levantar una carpa de 800 kg?

  6. Una masa de 500 g comprime un resorte 6,0 cm. Si la fricción es pequeña y la constante del resorte es de 4,0 N/m, la rapidez de la masa en el momento en que la masa se separa del resorte es:

Añadir el documento a tu blog o sitio web

similar:

Trabajo, energía y potencia iconEjercicios para entregar tema trabajo, potencia y energíA

Trabajo, energía y potencia iconCalentamiento Global
«energía» se define como la capacidad para realizar un trabajo. En tecnología y economía, «energía» se refiere a un recurso natural...

Trabajo, energía y potencia iconTaller trabajo y energíA

Trabajo, energía y potencia iconTrabajo monografico energía nuclear

Trabajo, energía y potencia iconTrabajo monografico energía nuclear

Trabajo, energía y potencia iconTrabajo práctico de física: Energía Nuclear

Trabajo, energía y potencia iconResumen El acento del trabajo está en el cruce de la filosofía, la...

Trabajo, energía y potencia iconArtículo 15. Exigencias básicas de ahorro de energía (HE)
«db-he ahorro de Energía» especifica parámetros objetivos y procedimientos cuyo cumplimiento asegura la satisfacción de las exigencias...

Trabajo, energía y potencia iconEn muchos sistemas prácticos, la energía de vibración es gradualmente...

Trabajo, energía y potencia icon«Trabajo en obtener una pintura que, aplicada a las ventanas, capte la energía del Sol»
«Puede parecer que la ciencia va lenta, pero en términos históricos la velocidad es de vértigo»






© 2015
contactos
l.exam-10.com